SHUTTLE CRITICAL ITEMS LIST - ORBITER

SUBSYSTEM : ACTIVE THERMAL CONTROL FMEA NO 06-3C -0207 -3 REV:08/23/8

ASSEMBLY : FREON THERMAL LOOP

CRIT. FUNC: :

P/N RI :MC250-0001-0610 P/N VENDOR:SV755519

CRIT. MOW:

QUANTITY

VEHICLE 102 103 104

11

EFFECTIVITY:

X Х

:ONE, DUAL LOOP OPERATION PHASE(S): PL

X 10 X 00 DO

PREPARED BY:

APPROVED BY://

REDUNDANCY SCREEN: A-PASS B-PASS C-PAS: APPROVED BY (NASA)

DES

O. TRANCA DES

SSM

MATERIAL DE

REL QZ

D. RISING ** REL W. SMITH WAS QU

REL

ITEM:

HEAT EXCHANGER, FUEL CELL - FC-46 COOLANT/FREON.

FUNCTION:

TRANSFERS HEAT FROM FUEL CELL COOLANT LOOPS TO FREON LOOPS SO THAT THE PUEL CELLS CAN BE COOLED TO THE PROPER OPERATING TEMPERATURE.

FAILURE MODE:

RESTRICTED FLOW, FC-40.

CAUSZ(S):

CONTAMINATION, CORROSION, MECHANICAL SHOCK.

EFFECT(S) OF:

- (A) SUBSTSTEM (B) INTERFACES (C) MISSION (D) CREW/VEHICLE
- (A) NO EFFECT.
- (B) LOSS OF ONE FUEL CELL BECAUSE OF OVERHEATING.
- (C) POSSIBLE LOSS OF MISSION. FARLY MISSION TERMINATION FOR FIRST PAILURE.
- (D) SECOND ASSOCIATED FAILURE (LOSS OF ONE OF TWO REMAINING FUEL CELLS) CAN CAUSE LOSS OF CREW/VEHICLE DURING LAUNCH PHASE.

DISPOSITION & RATIONALE:

(A) DESIGN (B) TEST (C) INSPECTION (D) FAILURE HISTORY (E) OPERATIONAL USE

(A) DESIGN

THE HEAT EXCHANGER IS MADE FROM STAINLESS STEEL AND NICKEL BRONZE ALLOYS, WHICH ARE CORROSION RESISTANT AND COMPATIBLE WITH FC-40 AND FREC 21, AND CONTAINS NO MOVING PARTS SUBJECT TO WEAR. THE FLOW HEADERS ARE MACHINED FROM A SINGLE PIECE STAINLESS STEEL BAR. THE HEADERS ARE WELDE TO THE CORE, WHICH CONTAINS 147 STACKED PLATE-FIN STAINLESS STEEL PARTIE SHEETS. ALL FINS ARE 0.020 INCHES HIGH AND ARE MADE OF 0.002 INCH THIC: STAINLESS STEEL SHEET STOCK. THE FINS ARE RUPPLED AND HAVE A DENSITY OF 32 FLOW PATHS PER INCH. PUMP INLET PILTERS (25 MICRON) PROTECT AGAINST CONTAMINATION.

SHUTTLE CRITICAL ITEMS LIST - ORBITER

SUBSYSTEM : ACTIVE THERMAL CONTROL FREA NO 06-3C -0207 -3 REV: 08/23/

(B) TEST

QUALIFICATION TEST - QUALIFICATION TESTED FOR 100 MISSION LIFE. VIBRATION TESTED AT 0.075 G^2/HZ FOR 52 MIN/AXIS, SHOCK TESTED AT +/- 20 EACH AXIS.

ACCEPTANCE TEST - ATP PRESSURE DROP TEST WILL VERIFY THAT PASSAGES ARE NOT OBSTRUCTED.

OMRSD - FC-40 FLOW RATE VERIFIED PRIOR TO EACH FLIGHT. FLUID USE CONTROLLED TO SE-5-0073.

(C) INSPECTION

RECEIVING INSPECTION

RAW MATERIAL AND PURCHASED COMPONENTS REQUIREMENTS ARE VERIFIED BY INSPECTION. PARTS PROTECTION IS VERIFIED BY INSPECTION.

CONTAMINATION CONTROL

SYSTEMS FILLID ANALYSES FOR CONTAMINATION ARE VERIFIED BY INSPECTION.
CONTAMINATION CONTROL PLAN IS VERIFIED BY INSPECTION. CONTAMINATION
CONTROL PROCESSES AND CLEAN AREAS ARE VERIFIED BY INSPECTION.

ASSEMBLY/INSTALLATION

MANUFACTURING, INSTALLATION, AND ASSEMBLY OPERATIONS ARE VERIFIED BY INSPECTION. SHEET METAL PARTS ARE INSPECTED AND VERIFIED BY INSPECTION SURFACE FINISHES VERIFIED BY INSPECTION. DIMENSIONS VERIFIED BY INSPECTION.

CRITICAL PROCESSES

WELDING IS VERIFIED BY INSPECTION. ALL WELDS ARE STRESS RELIEVED AFTER WELDING, VERIFIED BY INSPECTION. BRAZING IS VERIFIED BY INSPECTION.

HONDESTRUCTIVE EVALUATION

HEADER WELDS TO THE TUBES ARE PENETRANT AND X-RAY INSPECTED. OTHER WELDS (MOUNTING PAGE AND HEADER WELDS TO THE CORES) ARE PENETRANT AND 10X MAGNIFICATION VISUALLY INSPECTED. BRAZES ARE VERIFIED BY PROOF AND LEAK TESTS.

TESTING

INSPECTION VERIFIES THAT RESULTS OF ACCEPTANCE TESTING AND FLOWRATES ARE WITHIN SPECIFIED LIMITS.

BANDLING/PACKAGING

HANDLING AND PACKAGING REQUIREMENTS VERIFIED BY INSPECTION.

(D) FAILURE HISTORY NO FAILURE HISTORY.

(I) OPERATIONAL USE

ON-BOARD ALARM, FUEL CELL STACK TEMPERATURE, WILL INDICATE HARDWARE FAILURE. NO EFFECT TO FREON LOOPS. THE FUEL CELL WILL BE SHUT DOWN CAUSING AN EARLY END OF MISSION.